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Abstract
Fluctuations of the electromagnetic field produced by quantized matter in an
external electric field are investigated. A general expression for the power
spectrum of fluctuations is derived within the long-range expansion. It is
found that in the whole measured frequency band, the power spectrum of
fluctuations exhibits an inverse frequency dependence. A general argument is
given showing that for all practically relevant values of the electric field, the
power spectrum of induced fluctuations is proportional to the field strength
squared. As an illustration, the power spectrum is calculated explicitly using
a kinetic model with a relaxation-type collision term. Finally, it is shown that
the magnitude of fluctuations produced by a sample generally has a Gaussian
distribution around its mean value, and its dependence on the sample geometry
is determined. In particular, it is demonstrated that for geometrically similar
samples the power spectrum is inversely proportional to the sample volume.
Application of the results obtained to the problem of flicker noise is discussed.

PACS numbers: 72.70.+m, 12.20.−m, 42.50.Lc

1. Introduction

As is well known, power spectra of voltage fluctuations in all conducting materials exhibit a
universal profile in the low-frequency limit, which is close to inverse frequency dependence.
Fluctuations characterized by the power spectrum of this type are called usually 1/f, or flicker
noise. Although this noise dominates only at low frequencies, experiments show the presence
of the 1/f -component in the whole measured frequency band up to 106 Hz. Despite numerous
attempts, no lower frequency bound for the 1/f law has been found. In addition to that, it is
generally accepted that 1/f -noise produced by a sample is universally characterized by the
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following properties: (1) it is (roughly) inversely proportional to the sample volume, (2) it
is Gaussian and (3) its part induced by an external electric field is proportional to the field
strength squared.

A number of mechanisms have been suggested to explain the origin of 1/f -noise [1].
There is a widespread opinion that this noise arises from resistance fluctuations, which is quite
natural taking into account the property (3) mentioned above. Indeed, for a given current
through the sample, the mean squares of voltage and resistance fluctuations are proportional
to each other, the current squared being the proportionality coefficient. It has been proposed
that the resistance fluctuations possessing the other properties of flicker noise might result
from temperature fluctuations [2–4], fluctuations of the charge carrier mobility [5–8], or of
the number of charge carriers [9–15]. All these models, however, have restricted validity,
because they involve one or another assumption specific to the problem under consideration.
For instance, assuming that the resistance fluctuations arise from the temperature fluctuations,
one has to choose an appropriate spatial correlation of these fluctuations in order to obtain
the desired profile of the power spectrum. Similarly, McWhorter’s model [10] assumes that
fluctuations of the number of carriers is a result of surface trapping, and requires specific
distribution of trapping times. In addition to that, the models proposed so far reproduce the
1/f -profile only in a restricted range of frequencies, require an appropriate normalization of
the power spectrum, etc. At the same time, the ubiquity of flicker noise and universality of its
properties suggest existence of a simple and universal, and therefore, fundamental origin. It is
natural to look for this reason in the quantum properties of charge carriers. In this direction,
the problem has been extensively investigated by Handel and co-workers [16]. Handel’s
approach is based on the theory of infrared radiative corrections in quantum electrodynamics.
Handel showed that the 1/f power spectrum of photons emitted in any scattering process
can be derived from the well-known property of bremsstrahlung, namely, from the infrared
divergence of the cross section considered as a function of the energy loss. Thus, this theory
treats the 1/f -noise as a relativistic effect (in fact, the noise level in this theory ∼α(�v)2/c2,

where α is the fine structure constant, �v velocity change of the particle being scattered, and
c the speed of light). It should be mentioned, however, that Handel’s theory has been severely
criticized in many respects [17, 18].

In [19, 20], the role of quantum effects is considered from a purely non-relativistic point
of view. In [19], quantum fluctuations of the electromagnetic field produced by elementary
particles are investigated, and it is shown, in particular, that the correlation function of the
fluctuations exhibits an inverse frequency dependence in the low-frequency limit. This result
was applied in [20] to the calculation of the power spectrum of electromagnetic fluctuations
produced by a sample. It was proved, in particular, that the power spectrum possesses
properties (1) and (2) of flicker noise, mentioned above. As to property (3), it was argued
in [20] that this requirement is also met. The argument was based on the assumption of
analyticity of the electron density matrix with respect to the external electric field. However,
this assumption is not valid in general. Thus, the issue concerning the influence of an external
field is left open.

The purpose of the present paper is to investigate the influence of the external electric
field on quantum electromagnetic fluctuations in detail. We will show that for all practically
relevant values of the field strength, the power spectrum of induced fluctuations is proportional
to the field strength squared indeed.

Inclusion of an external field lowers the system symmetry; therefore, our first problem
below will be to generalize the results obtained in [20] for spherically symmetric systems
to systems with axial symmetry. This is done in section 3. First of all, we prove in
section 3.1 that the low-frequency asymptotic of the connected part of the correlation function
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is logarithmic. This result has already been proved in [20]. Although the proof does not rely
on the system symmetries, we give an independent and more simple and accurate proof of
this important fact. The contribution of the disconnected part is calculated in section 3.2, and
is found to exhibit an inverse frequency dependence, thus dominating in the low-frequency
limit. Because of the lower system symmetry, this calculation is much more complicated than
in the case considered in [20]. The expression obtained for the power spectrum is analysed in
section 4 where a general argument is given showing that the field-induced noise is quadratic in
the field strength, which is then illustrated using the simplest kinetic model with a relaxation-
type collision term. Section 5 summarizes the results of the work and states the conclusion.

2. Preliminaries

Let us consider an electromagnetic field produced by a classical resting particle with mass m
and electric charge e. It is described by the Coulomb potential as

A0 = e

4πr
, A = 0. (1)

In quantum theory, this form of the electromagnetic potential is reproduced by the mean
fields 〈in|Â0|in〉, 〈in|Â|in〉 calculated far away from the region of particle localization. If the
3-vector of the mean particle position is denoted by x0, and that of the point of observation
by x, then the latter condition means that |x − x0| � D, where D is a characteristic
length of the particle wave packet spatial spreading (for instance, the variance of the particle
coordinates). As a result of the quantum evolution according to the Schrödinger equation, D
increases in time, thus leading to a dispersion of the electromagnetic field produced by the
particle. Furthermore, because of the quantum indeterminacy in the particle position, the field
fluctuates. The correlation function of the fluctuations is conventionally defined by

Cµν(x, x ′) = 1
2 〈in|Âµ(x)Âν(x

′) + Âν(x
′)Âµ(x)|in〉 − 〈in|Âµ(x)|in〉〈in|Âν(x

′)|in〉, (2)

where x and x ′ are the spacetime coordinates of two observation points. Of course, this
function is dispersed, too. Our aim below will be to investigate the low-frequency properties
of this dispersion. It is clear that the condition |x−x0| � D is irrelevant in this investigation,
because the low-frequency asymptotic of the power spectrum of correlations is determined
largely by the late-time behaviour of the function Cµν(x, x ′), where D is unbounded (for a
free particle state, and for large times t, D is a linear function of t).

As in [20], we will work within the long-range expansion of the correlation function,
which is a convenient tool for extracting the leading term of the correlation function. Let us
briefly recall the reasons justifying application of this expansion. The function Cµν(x, x ′) can
be represented as a power series in the ratios lc/R and D/R, where lc = h̄/mc is the Compton
length, and R is either r = |x − x0| or r ′ = |x′ − x0|. However, as mentioned above, the
ratio D/R cannot be considered small as long as one is concerned with the low-frequency
behaviour of correlations. We overcome this problem by going over to the momentum space,
and work with an expansion in powers of lc and |p|/D̃, where p is the 3-momentum transfer to
the particle, and D̃ =

√
〈q2〉 is the variance of the particle momentum. Unlike D, the quantity

D̃ is time independent (for free particle states), so the expansion is valid for all times. By the
order of magnitude, the relevant values of the momentum transfer |p| ∼ h̄/r, and therefore,
validity of the expansion in powers of |p|/D̃ requires only that

rD̃ � h̄, r ′D̃ � h̄.

All subsequent considerations are carried out under these conditions.



7128 K A Kazakov

We recall also that, as was shown in [19], the leading term of the correlation function is of
zeroth order in lc; hence, in the units h̄ = c = 1 used from now on, it can be identified as the
limit of the correlation function for m → ∞. It should be emphasized that this identification
is only formal, in particular, it does not mean that the results obtained below apply only to
heavy particles.

According to equation (2), in order to find the correlation function of the electromagnetic
fluctuations, one has to calculate the in–in expectation values of the field operators Âµ as
well as of their products. In [19, 20], this was done using the Schwinger–Keldysh formalism.
In particular, it was proved in [20] that the leading low-frequency term of the correlation
function is contained entirely in its disconnected part (the second term in equation (2)).
The connected part of the correlation function was taken in [20] in the non-symmetric form
〈in|Âµ(x)Âν(x

′)|in〉. Although the proof given there can be carried over to the present case,
we will give an independent and more accurate proof of this important fact, which avoids the
complications of the Schwinger–Keldysh method.

Note, first of all, that for all values of t, t ′, the connected part of the correlation function
can be rewritten as
1
2 〈in|Âµ(x)Âν(x

′) + Âν(x
′)Âµ(x)|in〉 = 1

2 〈in|T {Âµ(x)Âν(x
′)} + T̃ {Âµ(x)Âν(x

′)}|in〉,
where the operation of time ordering T (T̃ ) arranges the factors so that the time arguments
decrease (increase) from left to right. Furthermore, for a one-particle state under stationary
external conditions, the state vector |in〉 can be substituted by the vector |out〉, up to a phase
factor. In the tree approximation, this factor is equal to unity; therefore, one can write, taking
into account that Âµ is Hermitian,
1
2 〈in|Âµ(x)Âν(x

′) + Âν(x
′)Âµ(x)|in〉

= 1
2 〈out|T {Âµ(x)Âν(x

′)}|in〉 + 1
2 〈in|T̃ {Âµ(x)Âν(x

′)}|out〉
= Re〈out|T {Âµ(x)Âν(x

′)}|in〉. (3)

The latter quantity can be calculated by applying the usual Feynman rules.
Let us assume, for simplicity, that the field-producing particle is described by a complex

scalar φ. It is not difficult to show actually that the results derived below are valid for particles
of any spin. This is because in the long-range limit, the value of the electromagnetic current is
fixed by the standard normalization conditions for the one-particle state, which are universal
for all particle species. Let the gradient invariance be fixed by the Lorentz condition1

G ≡ ∂µAµ = 0. (4)

Then the action of the system takes the form

S[�] = S0[�] + Sgf[�],

S0[�] =
∫

d4x{(∂µφ∗ + ieAµφ∗)(∂µφ − ieAµφ) − m2φ∗φ} − 1

4

∫
d4xFµνF

µν,

Sgf[�] = −1

2

∫
d4xG2, Fµν = ∂µAν − ∂νAµ,

(5)

where the Feynman weighting of the gauge condition is assumed. The tree diagrams generated
by this action, which contribute to the right-hand side of equation (2), are depicted in
figures 1 and 2.

To complete this section, let us define the power spectrum function of fluctuations. We
are concerned with correlations in the values of the electromagnetic fields measured at two

1 The proof of the gauge-independence of the leading contribution, given in [19], does not rely on the symmetry
properties of the particle wavefunction, and hence carries over to the present case.
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Figure 1. Feynman diagrams representing the disconnected part of the correlation function (the
second term in equation (2)). Wavy lines denote the photon propagators, solid lines the massive
particle. q and p are the particle 4-momentum and 4-momentum transfer, respectively.

(a) (b) (c)

Figure 2. Feynman diagrams representing the connected part of the correlation function (the first
term in equation (2)).

distinct time instants (spatial separation between the observation points, |x − x′|, is also
kept arbitrary). Accordingly, fixing one of the time arguments, say, t ′, we define the power
spectrum function as the Fourier transform of Cµν(x, x ′) with respect to (t − t ′):

Cµν(x,x′, t ′, ω) =
∫ +∞

−∞
dt Cµν(x, x ′) e−iω(t−t ′). (6)

3. Evaluation of the leading contribution

Evaluation of the low-frequency asymptotic of the correlation function proceeds in two steps.
First, we will prove in section 3.1 that the low-frequency asymptotic of the connected part of
Cµν (the first term in equation (2)) is logarithmic. The contribution of the disconnected part
will be calculated in section 3.2. It will be shown that this contribution exhibits an inverse
frequency dependence, and thus dominates in the low-frequency limit.

3.1. Low-frequency asymptotic of the connected part of correlation function

Before going into detailed calculations, let us first exclude the diagrams in figure 2, which do
not contain the h̄0 contribution. It is not difficult to see that these are the diagrams without
internal matter lines, i.e. 2(c) in the present case. Indeed, this diagram is proportional to the
integral ∫

d4k
eik(x−x ′)

k2(k − p)2
,

which does not involve the particle mass at all. Taking into account that each external matter
line gives rise to the factor (2εq)

−1/2, where εq =
√

m2 + q2 ≈ m, we see that the contribution
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of diagram 2(c) is proportional to 1/m. Hence, on dimensional grounds, this diagram is
proportional to h̄.

The contribution of diagrams 2(a) and (b) has the form

Bµν = Iµν(x, x ′) + Iµν(x
′, x),

Iµν(x, x ′) = ie2
∫ ∫

d4z d4z′D0(x, z)[φ0(z)
↔
∂µ D(z, z′)

↔
∂ ′
ν φ∗

0 (z′)] D0(z′, x ′),
(7)

where

ϕ
↔
∂µ ψ = ϕ∂µψ − ψ∂µϕ,

D(x, y) =
∫

d4k

(2π)4

e−ik(x−y)

m2 − k2 − i0
,

D0 ≡ D|m=0,

(8)

and φ0 is the given particle state. Introducing the Fourier transform of Iµν(x, x ′),

Ĩ µν(x,x′, t ′, ω) =
∫ +∞

−∞
dt Iµν(x, x ′) e−iω(t−t ′),

and going over to the momentum space, one finds

Ĩ µν(x,x′, t ′, ω) = e2
∫ ∫

d3q

(2π)3

d3p

(2π)3

a(q)a∗(q + p)√
2εq2εq+p

× eip0(t ′−t0)−ipx′
J̃ µν(p, q,x − x′, ω),

p0 = εq+p − εq,

(9)

where

J̃ µν(p, q,x − x′, ω) = −i
∫

d3k

(2π)3
eik(x′−x)(2qµ + kµ)(2qν + kν + pν)

×D0(k)D(q + k)D0(k − p)|k0=ω. (10)

Here qµ is the particle 4-momentum, and a(q) its momentum wavefunction at some time
instant t0. The function a(q) is normalized by∫

d3q

(2π)3
|a(q)|2 = 1, (11)

and is generally of the form

a(q) = b(q) e−iqx0 , (12)

where x0 is the particle mean position, and b(q) describes the momentum space profile of the
particle wave packet.

Let us now show that the low-frequency asymptotic of J̃ µν is logarithmic. We note, first
of all, that in the long-range limit, the 4-momenta kµ, pµ in the vertex factors can be neglected
in comparison with qµ, because the leading contribution comes from integration over small kµ.

For the same reason, the factor exp{ik(x′ − x)} can be set equal to unity. Next, introducing
the Schwinger parameterization of the propagators, we rewrite J̃ µν as

J̃ µν = 4qµqν

∫
d3k

(2π)3

∫ ∫ ∫ ∞

0
dx dy dz exp{i(x[ω2 − k2]

+ y[ω2 − k2 + 2mω − 2(kq)] + z[(ω − p0)2 − (k − p)2])}

= qµqν

2π3

∫ ∫ ∫ ∞

0
dx dy dz

(
π e−iπ/2

x + y + z

)3/2

exp

{
i
(yq − zp)2

x + y + z

}

× exp{i(xω2 + y[ω2 + 2mω] + z[(ω − p0)2 − p2])}.
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Changing the integration variables y → xy, z → xz and integrating over x gives

J̃ µν = qµqν

4π

∫ ∫ ∞

0
dy dz{(yq − zp)2

+ (1 + y + z)(ω2 + y[ω2 + 2mω] + z[(ω − p0)2 − p2])}−3/2.

The singularity of the latter integral at ω = 0 comes from integration over small y, z; therefore,
it is the same as the singularity of the integral

J̃ ′
µν = qµqν

4π

∫ ∫ ∞

0
dy dz{y2q2 − 2yz(qp) + ω2 + y[ω2 + 2mω] + z[(ω − p0)2 − p2]}−3/2

= qµqν

2π

∫ ∞

0

dy

(ω − p0)2 − p2 − 2y(qp)
{y2q2 + ω2 + y[ω2 + 2mω]}−1/2

= qµqν

2π

∫ ∞

0

dy

(ω − p0)2 − p2 − 2ωy(qp)
{y2q2 + 1 + y[ω + 2m]}−1/2.

After the transformations performed, the singularity of the last integral for ω → 0 reappears
at y → ∞, and hence, it coincides with the singularity of the integral

J̃ ′′
µν = qµqν

2π |q|
∫ ∞ dy

y

1

(ω − p0)2 − p2 − 2ωy(qp)

= qµqν

2π |q|{(ω − p0)2 − p2} ln
y

(ω − p0)2 − p2 − 2ωy(qp)

∣∣∣∣
∞

∼ qµqν

2π |q|p2
ln

1

ω
. (13)

It is not difficult to verify that the expression obtained agrees with the results of section 3.1
of [20]. Thus, we have proved that the connected part of the correlation function diverges for
ω → 0 only logarithmically.

3.2. Low-frequency asymptotic of the disconnected part of the correlation function

Let us turn to the disconnected part of the correlation function. To find its Fourier transform,
we have to evaluate the integral∫ +∞

−∞
dt〈in|Âµ(x)|in〉 e−iω(t−t ′) = eδ0µ eiωt ′ Ĩ (r, ω), (14)

where

Ĩ (r, ω) =
∫ +∞

−∞
dt

{
e−iωt

∫ ∫
d3q

(2π)3

d3p

(2π)3

e−ipr

p2
eip0(t−t0)b(q)b∗(q + p)

}
, r = x − x0.

To the leading order of the long-range expansion, b(q + p) can be substituted here by b(q).

Using also

p0 ≈ (p + q)2

2m
− q2

2m

gives

Ĩ (r, ω) = 2π e−iωt0

∫ ∫
d3q

(2π)3

d3p

(2π)3
δ

(
ω − p2 + 2pq

2m

)
e−ipr

p2
|b(q)|2.

The function b(q) will be assumed to possess the symmetry of the external field. Thus, in
the presence of a homogeneous external electric field, the function b(q) is axially symmetric;
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taking the z-axis in the direction of the field, one has b(q) = b(q⊥, qz), where q⊥ = √
q2 − q2

z

is the transverse component of the particle momentum. In this case, Ĩ is a function of ζ = rz

and ρ =
√

r2 − ζ 2, Ĩ (r, ω) = Ĩ (ρ, ζ, ω), and hence, averaging over transverse directions,
one can write

Ĩ (ρ, ζ, ω) = 2π e−iωt0

∫ ∫
d3q

(2π)3

d3p

(2π)3
δ

(
ω − p2 + 2pq

2m

)
J0(|p|ρ sin φ)

p2

× e−i|p|ζ cos φ|b(q⊥, qz)|2,
where φ is the angle between p and the z-axis, and J0 is the Bessel function. To evaluate
the p integral it is convenient to introduce a spherical coordinate system, with the polar axis
pointing in the direction of the vector q. Let the azimuthal and polar angles of p in this system
be denoted by ϕ, θ, and those of the z-axis by ϕ′, θ ′, respectively. Then

cos φ = sin θ sin θ ′ cos(ϕ − ϕ′) + cos θ cos θ ′,

and

Ĩ (ρ, ζ, ω) = m e−iωt0

(2π)2

∫
d3q

(2π)3
|β(q⊥, qz)|2

∫ π

0
dθ sin θ

∫ 2π

0
dϕ

J0(uρ sin φ) e−iuζ cos φ√
q2 cos2 θ + 2mω

,

u = −|q| cos θ +
√

q2 cos2 θ + 2mω,

(15)

where it is assumed that ω > 0. Since the integrand in this formula depends on the difference
ϕ − ϕ′, the result of integration over ϕ is independent of ϕ′. Setting the latter equal to zero
and taking φ as the integration variable yields

J ≡
∫ 2π

0
dϕ J0(uρ sin φ) e−iuζ cos φ

= 2
∫ θ+θ ′

θ−θ ′
dφ

sin φJ0(uρ sin φ) e−iuζ cos φ

√
[cos φ − cos(θ + θ ′)][cos(θ − θ ′) − cos φ]

. (16)

It is seen from equation (15) that the singularity at ω = 0 comes from integration over
θ ≈ π/2. Without changing the singular contribution, therefore, one can set θ = π/2 in the
integral (16), which after simple transformations takes the form

J = 4
∫ 1

0
dv

J0
(
uρ

√
1 − sin2 θ ′v2

)
cos(uvζ sin θ ′)√

1 − v2
. (17)

In the long-range limit, the argument of the Bessel function is large, so one can use the
asymptotic formula

J0(z) =
√

2

πz
cos

(
z − π

4

)
.

Thus, the above integral involves rapidly oscillating trigonometric functions, and the leading
contribution comes from integration around the point of stationary phase of the integrand.
Assuming ζ > 0 and decomposing the product of cosines into a sum, one sees that the range
of integration contains one such point, if ζ < r sin θ ′, namely

v0 = ζ

r sin θ ′ ,

and hence

I ≈ 2

√
2

π
Re

∫ 1

0
dv

exp
{
i
(
uρ

√
1 − sin2 θ ′v2 + uvζ sin θ ′ − π

4

)}
√

(1 − v2)uρ
√

1 − sin2 θ ′v2
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≈ 2

√
2

π
Re

∫ 1

0
dv

exp
{
i
(
ur − ur3

2ρ2 sin2 θ ′(v − v0)
2 − π

4

)}
√

(1 − v2)uρ
√

1 − sin2 θ ′v2

≈ 2

√
2

π
Re

exp
{
i
(
ur − π

2

)}
√(

1 − v2
0

)
uρ

√
1 − sin2 θ ′v2

0

√
2πρ2

ur3 sin2 θ ′ = 4 sin(ur)

ur

√
sin2 θ ′ − ζ 2

r2

.

(18)

Substituting this in equation (15), introducing a new spherical system of coordinates, with the
polar axis in the z direction and noting that θ ′ is the polar angle of the vector q gives

Ĩ (ρ, ζ, ω) = m e−iωt0

4π4r

∫ π−arcsin ζ/r

arcsin ζ/r

dθ ′ sin θ ′√
sin2 θ ′ − ζ 2

r2

∫ ∞

0
dq q2|β(q, θ ′)|2

×
∫ π

0
dθ

sin θ sin(ur)

u
√

q2 cos2 θ + 2mω
,

u = −q cos θ +
√

q2 cos2 θ + 2mω, β(q, θ ′) ≡ b(q sin θ ′, q cos θ ′),
or, taking u as the integration variable,

Ĩ (ρ, ζ, ω) = m e−iωt0

4π4r

∫ π−arcsin ζ/r

arcsin ζ/r

dθ ′ sin θ ′√
sin2 θ ′ − ζ 2

r2

∫ ∞

0
dq q|β(q, θ ′)|2

×
∫ √

q2+2mω+|q|
√

q2+2mω−|q|
du

sin(ur)

u2
. (19)

To further transform this integral, it is convenient to define a function �(q, θ) according to

�(q, θ) = 1

2π2

∫ +∞

q

dw w|β(w, θ)|2. (20)

Then integrating by parts and taking into account that �(q, θ) → 0 for q → ∞ brings
equation (19) to the form

Ĩ (ρ, ζ, ω) = m e−iωt0

2π2r

∫ π−arcsin ζ/r

arcsin ζ/r

dθ sin θ√
sin2 θ − ζ 2

r2

∫ +∞

0
dq

�(q, θ)√
q2 + 2mω

×
{

sin(ur)

u

∣∣∣∣
u=

√
q2+2mω+q

+
sin(ur)

u

∣∣∣∣
u=

√
q2+2mω−q

}
. (21)

Finally, integrating Ĩ by parts once more, we find

Ĩ (ρ, ζ, ω) = e−iωt0

2π2rω

∫ π−arcsin ζ/r

arcsin ζ/r

dθ sin θ√
sin2 θ − ζ 2

r2

∫ +∞

0
dq

× sin
(
r
√

q2 + 2mω
) {

2� cos(qr) +
1

r

∂�

∂q
sin(qr)

}
. (22)

This expression considerably simplifies in the practically important case of low ω and large r.

Namely, if ω is such that

ω � D̃

mr
≡ ω0, (23)

and also

rD̃ � 1 (24)



7134 K A Kazakov

(and therefore, ω � D̃2/m), then the first term in Ĩ turns out to be exponentially small
(∼e−rD̃) because of the oscillating product of trigonometric functions. Replacing sin2(qr) by
its average value (1/2) in the rest of Ĩ gives

Ĩ (ρ, ζ, ω) = e−iωt0

4π2r2ω

∫ π−arcsin ζ/r

arcsin ζ/r

dθ sin θ√
sin2 θ − ζ 2

r2

∫ +∞

0
dq

∂�

∂q

= − e−iωt0

4π2r2ω

∫ π−arcsin ζ/r

arcsin ζ/r

dθ sin θ�(0, θ)√
sin2 θ − ζ 2

r2

,

or,

Ĩ (ρ, ζ, ω) = − e−iωt0

8π4r2ω

∫ π−χ

χ

dθ sin θ√
sin2 θ − sin2 χ

∫ +∞

0
dq q|β(q, θ)|2, (25)

where χ is the angle between the vector r and (x, y) plane, sin χ = ζ/r.

In the case of a spherically symmetric wavefunction, β(q, θ) = β(q), integration over θ

in equation (25) yields the expression derived in [20]

Ĩ (ρ, ζ, ω) = − e−iωt0

8π3r2ω

∫ +∞

0
dq q|β(q)|2. (26)

It has been assumed in the course of derivation of equation (25) that ω > 0, ζ > 0. It is not
difficult to verify that, in the general case, Ĩ (ρ, ζ, ω) = ei(|ω|−ω)t0 Ĩ (ρ, |ζ |, |ω|).

Substituting the expression obtained into the defining equations (14), (2) and (6), we thus
obtain the following expression for the low-frequency asymptotic of the correlation function:

C00(ρ, ζ, r ′, ω) = eiω(t ′−t0)
e2

32π5r2r ′|ω|
∫ π−|χ |

|χ |

dθ sin θ√
sin2 θ − sin2 χ

∫ +∞

0
dqq|β(q, θ)|2, (27)

all other components of the correlation function vanishing (in fact, they are suppressed by the
factor |q|/m � 1).

In applications to microelectronics, ω varies from 10−6 Hz to 106 Hz, the relevant distances
r are usually 10−5 cm to 10−2 cm, D̃ ∼ h̄/d, where d ≈ 10−8 cm is the lattice spacing, and
m is the effective electron mass, m ≈ 10−27 g, hence, ω0 ≈ 1010 Hz, so the conditions
r � d, ω � ω0 are always well satisfied.

In connection with the application of the results obtained to solids, it should be stressed
that they refer to long-living free-evolving electron states. At the same time, because of
collisions of electrons with phonons, impurities and with each other, their evolution in a
crystal usually cannot be considered free. It is important, however, that in view of the
smallness of the electron mass in comparison with the atomic masses, the electron collisions
with phonons and impurities may often be considered elastic. Such collisions do not change
the electron energy, and therefore they do not influence the time evolution of the electron
wavefunction. As to electron–electron collisions, they do change the energy of electrons.
However, the electron component in solids is practically always degenerate, and hence, only
electrons with energies near the Fermi surface are actually scattered. Therefore, the above
results concerning dispersion of the electromagnetic field fluctuations remain essentially the
same despite the collisions, provided that they are applied to electrons far from the Fermi
surface, and expressed in terms of the electron density matrix, rather than the wavefunction.
Denoting the diagonal elements of the momentum space density matrix of electrons by �(q, θ),

equation (27) thus takes the form

C00(ρ, ζ, r ′, ω) = eiω(t ′−t0)
e2

32π5r2r ′|ω|
∫ π−|χ |

|χ |

dθ sin θ√
sin2 θ − sin2 χ

∫ +∞

0
d qq�(q, θ). (28)
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The power spectrum of the noise produced by uncorrelated electrons in a sample can be found
by integrating equation (28) with respect to x0 over the sample volume. If the time instants t0
are distributed uniformly (which is natural to expect), then the value of the total noise spectrum
function, C tot

00 , remains at the level of the individual contribution (28) independently of the
number of electrons in the sample, because of cancellation of the alternating phase factors
e−iωt0 .

4. The noise induced by external electric field

According to property (3) of observed flicker noise, mentioned in the introduction, the power
spectrum of the noise induced by an external electric field is proportional to E2, at least for
sufficiently small values of the field strength E. If the density matrix � were analytic with
respect to E, then the scalar function C tot

00 (E) − C tot
00 (0) ≡ �C tot

00 (E) would expand in even
powers of E, and therefore, the leading term would be quadratic in the field strength, as
required. However, � is not generally analytic in E, and therefore, the expansion of �C tot

00 (E)

might contain, e.g., a term proportional to |E|, in contradiction with the experiment. Thus,
our primary concern below will be the weak field asymptotic of the power spectrum given by
equation (28). There is actually a simple and general reason why the right-hand side of this
equation should be quadratic in E despite possible non-analyticity of the density matrix �.

This matrix is a functional of the equilibrium density matrix, �0, and of the field strength. As
was mentioned in the preceding section, the electron states responsible for the 1/ω behaviour
of the correlation function are those with energies far from the Fermi surface. For such
states, the function � is a constant inversely proportional to the electron density, in particular,
it is independent of parameters characterizing the Fermi surface, such as Fermi energy or
momentum. Therefore, on dimensional grounds, the integral on the right of equation (28)
should be proportional to the square of a characteristic momentum built from the field strength.
The only such momentum is e|E|τ, where τ is some time parameter characterizing electron
kinetics, and hence, �C tot

00 ∼ E2. This reasoning will be illustrated below using the simplest
kinetic model with the relaxation-type collision term, which admits full theoretic investigation.

In the presence of a constant homogeneous electric field, the model kinetic equation reads

eE
∂�

∂qz

= −� − �0

τ
, (29)

where the z-axis is chosen in the direction of E (Ez = |E| ≡ E), τ is the relaxation time.
Since equation (28) was obtained for a free electron, we assume that the band structure in the
given solid is parabolic, ε = q2/2m∗, where m∗ is the effective electron mass. According to
equation (11), the function � is normalized by∫

d3q

(2π)3
� = 1.

If the function �0(ε) satisfies this condition, then the normalized solution of the kinetic
equation (29) has the form

� = eqz/q0

q0

∫ ∞

qz

dξ e−ξ/q0�0(ε
′), ε′ = 1

2m∗
(
q2

⊥ + ξ 2
)
, q0 = |e|Eτ. (30)

Thus, in order to find the quantity C00, we have to calculate the following integral:

K =
∫ π−χ

χ

dθ sin θ√
sin2 θ − sin2 χ

∫ +∞

0
dq q

eq cos θ/q0

q0

∫ ∞

q cos θ

dξ e−ξ/q0 �0(ε
′),

ε′ = 1

2m∗ (q2 sin2 θ + ξ 2).
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Changing the integration variables q, θ → ζ, η according to

cos θ = ζ cos χ√
ζ 2 + η2

, q2 = ζ 2 + η2,

brings this integral to the form

K =
∫ ∫ +∞

−∞
dζ dη

eζ cos χ/q0

2q0

∫ ∞

ζ cos χ

dξ e−ξ/q0 �0(ε
′′), ε′′ = 1

2m∗ (η2 + ζ 2 sin2 χ + ξ 2).

Integrating by parts with respect to ζ yields

K = 1

2

∫ ∫ +∞

−∞
dζ dη �0

(
ζ 2 + η2

2m∗

)

− sin2 χ

2m∗ cos χ

∫ ∫ +∞

−∞
dζ dηζ eζ cos χ/q0

∫ ∞

ζ cos χ

dξ e−ξ/q0
d�0

dε
(ε′′).

The first term in this expression represents the value of the quantity K in the absence of the
external field. Therefore, performing a shift ξ → ξ + ζ cos χ, and then ζ → ζ − ξ cos χ in
the remaining integral, we find the part induced by the electric field

�K = sin2 χ

2m∗

∫ ∫ +∞

−∞
dζ dη

∫ ∞

0
dξξ e−ξ/q0

d�0

dε
(ε′′′), ε′′′ = 1

2m∗ (η2 + ζ 2 + ξ 2 sin2 χ).

Going over to polar coordinates in (ζ, η) plane gives finally

�K = π sin2 χ

∫ ∞

0
dξ ξ e−ξ/q0

∫ +∞

ξ 2 sin2 χ/2m∗
dε

d�0

dε
(ε)

= −π sin2 χ

∫ ∞

0
dξ ξ e−ξ/q0�0

(
ξ 2 sin2 χ

2m∗

)
.

In the case of a degenerate electron system, the function �0(ε) is nearly constant up to Fermi
energy where it falls off to zero. For such a function, �K ∼ q2

0 , up to exponentially small
terms, provided that q0 is sufficiently small. Indeed, assuming q0 � qF , where qF is the
electron momentum at the Fermi surface, and neglecting terms of the order e−qF /q0 , one can
substitute �0

(
ξ 2 sin2 χ

2m∗
)

by �0(0) in the above integral to obtain

�K = −π sin2 χ�0(0)

∫ ∞

0
dξ ξ e−ξ/q0 = −q2

0�0(0)π sin2 χ.

Inserting this into equation (28), we arrive at the following expression for the power spectrum
of the induced noise:

�C00 = −eiω(t ′−t0)
e2q2

0�0(0)ζ 2

32π4r4r ′|ω| . (31)

Thus, �C00 ∼ E2, as was to be shown. It is important that the correction terms are of the
order e−qF /q0 , and hence, from the practical point of view, the condition q0 � qF amounts to
q0 < qF . This implies that the upper limit on the field strengths for which equation (31) is
valid is well above all experimentally relevant values, provided that the relaxation time τ is of
the order of the electron mean free time (which is usually about 10−12 s).

Let us compare this result with the power spectrum of quantum fluctuations in the absence
of an external field, obtained in [20], which in the present notation has the form

C00(0) = eiω(t ′−t0)
e2

32π4r2r ′|ω|
∫ +∞

0
dq q�0(ε).
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By the order of magnitude,

�C00

C00(0)
∼ q2

0�0(0)∫ +∞
0 dq q�0

∼ qF q2
0 �0(0) ∼ q2

0

q2
F

,

since �0(0) ∼ q−3
F . Thus, in the model considered, the induced noise represents a relatively

small correction.
In practice, one is interested in the fluctuations of the voltage, U, between two leads

attached to a sample. Using the above results, it is not difficult to write an expression for the
voltage correlation function, CU(x,x′, ω). We have

〈Û (x,x′, t)〉〈Û (x,x′, t ′)〉 = 〈Â0(x, t) − Â0(x
′, t)〉〈Â0(x, t ′) − Â0(x

′, t ′)〉
= 〈Â0(x, t)〉〈Â0(x, t ′)〉 + 〈Â0(x

′, t)〉〈Â0(x
′, t ′)〉

− 〈Â0(x
′, t)〉〈Â0(x, t ′)〉 − 〈Â0(x, t)〉〈Â0(x

′, t ′)〉, (32)

where 〈· · ·〉 denotes averaging over the given in state. Fourier transforming and applying
equation (31) to each of the four terms in this expression, we obtain the power spectrum of
the induced voltage fluctuation across the sample:

�CU = −eiω(t ′−t0)
e2q2

0�0(0)

32π4|ω|
(

ζ 2

r5
+

ζ ′2

r ′5 − ζ ′2

r ′4r
− ζ 2

r4r ′

)
. (33)

This equation represents an individual contribution of an electron to the electric potential
fluctuation. As was mentioned at the end of section 3.2, because of the oscillating exponent
e−iωt0 , the magnitude of the total noise remains at the level of the individual contribution
independently of the number of electrons. Therefore, summing up all contributions amounts
simply to averaging over x0:

∣∣�C tot
U

∣∣ = e2q2
0�0(0)G

32π4|ω|� , (34)

where

G ≡
∫

�

d3x0

(
ζ 2

r5
+

ζ ′2

r ′5 − ζ ′2

r ′4r
− ζ 2

r4r ′

)
(35)

is a dimensionless geometrical factor and � is the sample volume.
It is convenient to express the right-hand side of equation (34) through the number of

electrons in the sample, N, rather than the sample volume. Taking into account that for
degenerate electrons, �0(0) = 2/n, where n is the electron density (the factor 2 accounts for
two spin states), substituting n = N/�, q0 = |e|Eτ, and restoring the ordinary units brings
equation (34) to the form

∣∣�C tot
U

∣∣ = e4

32π5h̄2

E2τ 2G

Nf
, (36)

where f = |ω|/2π. Finally, if the voltage leads are aligned in the z direction, as is usually the
case, equation (36) can be rewritten as

∣∣�C tot
U

∣∣ = αŪ 2

Nf
, α = e4τ 2G

32π5l2h̄2 , (37)

where Ū is the average voltage across the sample, and l is the sample length in the direction
of the electric field. In this form, it is similar to the well-known empirical Hooge law, except
that N in equation (37) is the total number of electrons in the sample, rather than the number
of charge carriers. We see that the analogue of the Hooge constant, α, depends on the physical
properties of the sample material as well as on the sample geometry.
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Figure 3. Voltage measurement in geometrically similar samples (s = 2).

Let us discuss the role of the sample geometry in somewhat more detail. Consider two
geometrically similar samples, and let s be the ratio of their linear dimensions (see figure 3).
It turns out that such samples are characterized by the same value of the G-factor. Indeed,
since the voltage across the sample is usually measured via two leads attached to its surface,
the radius-vectors of the leads drawn from the centre of similitude scale by the same factor s,

and therefore,

∫
�2

d3x0
ζ 2

r4r ′ =
∫

s3�1

d3x0
(sz − z0)

2

|sx − x0|4|sx′ − x0| =
∫

�1

s3d3x0
(sz − sz0)

2

|sx − sx0|4|sx′ − sx0|

=
∫

�1

d3x0
(z − z0)

2

|x − x0|4|x′ − x0| =
∫

�1

d3x0
ζ 2

r4r ′ ,

and likewise for the other terms in equation (35). Thus, it follows from equation (34) that for
geometrically similar samples, the noise level is inversely proportional to the sample volume.
This is in agreement with property (1) of flicker noise, mentioned in section 1. It is also clear
that the distribution of the noise magnitude around the value C tot

00 is Gaussian by virtue of the
central limiting theorem. Thus, the quantum field fluctuations in a sample possess property
(2) as well.

It is also worthwhile to make the following comment concerning expression (35). The
integrand in this formula involves the terms ζ 2/r5 and ζ ′2/r ′5 which give rise formally to a
logarithmic divergence when the observation points approach the sample. In this connection,
it should be recalled that the above calculations have been carried out under the condition
rD̃ � 1, hence, r, r ′ cannot be taken too small. Furthermore, one should remember that in
any field measurement in a given point, one deals actually with the field averaged over a small
but finite domain surrounding this point, i.e., the voltage lead in our case. Thus, for instance,
the quantity Â0(x, t) appearing in expression (32) is to be substituted by

Â0 = 1

�L

∫
�L

d3xÂ0(x, t),

where �L is the voltage lead volume. As a result of this substitution, the term ζ 2/r5, for
instance, takes the form

1

�2
L

∫ ∫
�L

d3x d3x̃
(z − z0)

2

|x − x0|4|x̃ − x0| .

Upon substituting into equation (35), this term gives rise to a finite contribution even for
intersecting �,�L.
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5. Discussion and conclusions

The main result of the present work is the general formula (27) describing the power
spectrum of quantum electromagnetic fluctuations produced by elementary particles in the
presence of an external field. This formula shows that in the low-frequency limit the power
spectrum exhibits an inverse frequency dependence. Although the range of applicability of
equation (27), given by conditions (23), (24), depends on the problem under consideration,
it embraces virtually all experimentally relevant frequencies and distances. In particular, in
application to microelectronics, the term ‘low-frequency limit’ means that f � 1010 Hz,
which covers well the whole measured band. To the best of the author’s knowledge, none of
the other physical mechanisms of flicker noise, suggested so far, has been able to explain the
observed plenum of the 1/f law.

We have applied the general formula to the calculation of the power spectrum of
fluctuations produced by electrons in a sample in an external electric field, assuming that
the electron kinetics is described by a model equation with the relaxation-type collision term.
This calculation shows that the power spectrum of induced fluctuations is proportional to the
field strength squared for all practically relevant values of the electric field. We have also
argued that this conclusion in fact holds true in the general case. Finally, we have established
the exact dependence of the power spectrum on the sample geometry. We have shown that
for geometrically similar samples the noise power spectrum is inversely proportional to the
sample volume, while for samples of the same volume dependence on the sample geometry is
described by the dimensionless G-factor given by equation (35).

Qualitatively, the established properties of quantum electromagnetic fluctuations match
perfectly with the experimentally observed properties of 1/f -noise. As to the quantitative
side, the estimates of [20] show that the noise level predicted by equation (27) in the absence
of an external field is in a reasonable agreement with experimental data. At the same time,
according to the results of section 4, the change of the noise level in an external electric field
is relatively small, which disagrees with observations. In fact, �C tot

U (E) becomes comparable
with C tot(0) only for q0 ≈ qF . Under the conditions of [3], for instance, this implies unusually
large values of the relaxation time, namely τ ≈ 10−9 s, which is several orders of magnitude
larger than the electron mean free time.

Let us briefly discuss possible resolutions of this problem. First of all, the found
disagreement may be the result of the oversimplifications made in describing electron
kinetics. Of course, it is difficult to expect that predictions of the simple model employed
in section 4 will be quantitatively reliable. A possible improvement of this model is to
describe electron kinetics in the Grinberg–Luriy approximation [21]. In this approximation,
which is well suited for electron scattering on lattice impurities, relaxation time is a
function of electron momentum, τ = τ(q), which is much more realistic than the case
τ = const considered above. In general, the collision cross section tends to a constant
value for slow particles. Therefore, the free time for such particles is inversely proportional
to the particle velocity, while, as was mentioned above, it is electrons with momenta
well below Fermi momentum which are responsible for the 1/f asymptotic of the power
spectrum.

There is also a principally different possibility for the noise amplification by an external
field. Recall that expression (34) for the power spectrum of fluctuations produced by a sample
was derived assuming uniform distribution of the time instants t0. Therefore, correlation
between t0 is a possible source of the noise amplification. Since the number of electrons in
the sample is large, already a relatively small correlation in the values of t0 would result in a
notable increase of the noise level.
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To conclude, the results presented in this paper suggest that quantum electromagnetic
fluctuations can be the origin of flicker noise, but their relative role in explaining the observed
noise level requires further investigation.
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